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Abstract 

Variant calling in segmental duplications is challenging for short-read 

sequencing because of ambiguous read origins. We present SDrecall, a method for 

sensitive variant detection in these regions. Upon constructing a network of 

homologous sequences, SDrecall realigns reads to each segmental duplication from 

its homologous counterparts. Realignments are phased and assembled into 

haplotypes via graph-based algorithms, followed by integer linear programming to 

retain the two most plausible haplotypes. Tested against long-read benchmarks, 

SDrecall achieved 95% sensitivity, while maintaining manageable false positives for 

short variants. SDrecall thus offers significant value for molecular diagnosis in terms 

of causal mutation detection within homologous regions. 
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Background 

 Next-generation sequencing (NGS) has revolutionized human genome 

analysis, yet certain genomic regions remain difficult to map accurately. Segmental 

duplications (SDs)—defined as genomic segments of at least 1 kb with high 

sequence identity (typically above 90%) to other regions(1-3)—are particularly 

challenging because short reads offer limited sequence information to determine 

their true origins. In modern NGS workflows, DNA is typically fragmented into pieces 

ranging from 250 to 500 bp, and paired-end sequencing generates two 150 bp reads 

from both ends of each fragment. Consequently, if a fragment originates entirely 

within an SD, its read pair may align to multiple similar regions in the reference 

genome, leading to high mapping ambiguity according to modern mapping 

algorithms(4-6). As the size of SD grows, more fragments enveloped by the SD are 

likely to be mapped with undetermined origins (Figure 1A). As a proof of concept, 

data from Genome in a Bottle(7) project (GIAB) sample HG002 show that mapping 

quality (MAPQ)—a metric inversely related to mapping ambiguity—of the reads 

originated from the SD decreases as the size of SD grows(Figure 1B).  

According to the whole-genome assembly comparison (WGAC)(8), which is 

considered the gold standard for SD detection(9-12), GRCh37 and GRCh38 contain 

approximately 144 Mbp and 162 Mbp of SDs, respectively—about 5% of the 

genome—that overlap with roughly 2,400 genes(13) (around 6% of protein-coding 

regions). The telomere-to-telomere (T2T)-CHM13 assembly, however, reveals an 

expanded SD landscape (approximately 218 Mbp, or 6.6% of the genome)(14, 15), 

indicating a bigger burden from SDs. This presents further challenges for the 

molecular diagnosis of Mendelian disorders associated with genes harboring 
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homologous sequences such as Chronic Granulomatous Disease (CGD, NCF1)(16), 

Spinal Muscular Atrophy (SMA, SMN1/SMN2)(17, 18), Congenital Adrenal 

Hyperplasia (CAH, CYP21A2)(19), and Gaucher Disease (GD, GBA)(20) . According 

to the Online Mendelian Inheritance in Man (OMIM)(21), we summarized the SD-

overlapping situation of 200 selected disease causal genes to a map in Additional file 

1: Fig. S3. 

The mapping ambiguity within SDs can be naturally overcome by long-read 

sequencing—commonly referred to as Third Generation Sequencing (TGS) since 

long reads are generally larger than most SDs and spans unique genomic 

sequences. Despite the rapid development of TGS, its cost remains substantially 

higher than that of conventional NGS(22), leading to limited application in large-scale 

clinical practice. In addition, given the huge amount of legacy NGS data from 

patients accumulated in the last two decades, revisiting them with advances in 

variants detection within SDs might lead to significant novel diagnoses and insights. 

Therefore, improving the analysis of NGS data for sensitive variant detection within 

SDs remains a valuable advancement in genomic diagnostics. While previous 

methods offered some solutions(23, 24), they have typically focused on limited 

genomic regions tied to specific disorders, and cannot be generalized to other SD 

regions in human genome.  

The mapping ambiguity and variant detection within segmental duplications 

(SDs) cannot be completely resolved due to the inherently limited information carried 

by short reads, thus rendering the simultaneous achievement of high sensitivity and 

precision impossible. In the molecular diagnosis of Mendelian diseases, sensitivity is 

of utmost importance, whereas reduced precision can be mitigated to a certain 

extent through further downstream analysis. In this context, detected variants are 
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typically ranked to identify disease causality(25, 26), and most false positives 

(FPs)—whether functionally irrelevant or common in the population—do not 

withstand the causality evaluation.  

Ebbert et al. proposed a method(27) to improve the mapping in low-

mappability regions by realigning reads from all related homologous regions. This 

work, as a proof-of-concept, managed to recover numerous SD variants that might 

explain part of missing heritability of Alzheimer’s Disease. However, their method 

was not benchmarked against gold standard callsets to quantify the improved variant 

detection sensitivity. In addition, this work lacks rigorous measures to control the 

false positives introduced by realignments, which might lead to excessive noises for 

downstream analysis.  

Here we introduce SDrecall, a novel approach for sensitive detection of single 

nucleotide variants (SNVs) and small indels ( < 30bp ) within SDs. SDrecall offers 

small variant detection complementary to the traditional variant callers like GATK(28) 

and DeepVariant(29). According to benchmarks with golden callsets derived from 

long-read sequencing data in the GIAB project, SDrecall improves the variant 

detection sensitivity to approximately 95% in comparison to the benchmark callsets 

from the GIAB project while managed to remove 88% false positives (FPs) 

introduced by read realignments. To the best of our knowledge, SDrecall is the first 

comprehensive tool designed to detect small variants in SDs with high sensitivity 

while stringently controlling false positives based on NGS data. It offers full 

inspection of genomic regions camouflaged by ambiguous alignments while 

minimizing relevant FPs clouding the causal variant identification in molecular 

diagnosis. This tool is poised to play a crucial role in significantly enhancing the 

ACCEPTED MANUSCRIPTARTICLE IN PRESS



ARTIC
LE

 IN
 PR

ES
S

 

molecular diagnosis rate of Mendelian disorders and has already helped capture 

causal variants in three CGD patients. 
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Results 

To demonstrate the efficacy of SDrecall in terms of enhancing the detection 

sensitivity of small variants (SNPs and indels) within segmental duplications (SDs), 

we need to first briefly introduce the general scheme of the workflow. With user-

defined regions of interest, which are the protein coding regions by default, SDrecall 

identifies the SDs overlapping with these regions, as well as their counterpart SDs 

genome-wide to form groups of SDs sharing homologous sequences. Subsequently, 

within each group, SDrecall recruits all the overlapping reads, which are potentially 

misaligned due to homology, and re-aligns them respectively to each SD that 

overlaps with protein coding regions (protein coding SD, pcSD) in the same group. 

This homology-guided read recruitment and re-mapping improves variant calling to 

near perfect (approximately 99%) sensitivity within SDs, indicating a strong 

competence of previous homologous counterpart identification for all SDs.  

Subsequently, to remove the excessive false positives introduced by the 

realignments, SDrecall phases and assembles the realigned reads into longer micro-

haplotypes via a graph-based phasing and assembly process. Given the diploid 

nature of human genome, SDrecall further adopts a binary integer linear constraint 

model to identify misaligned reads introduced by re-mapping, effectively reducing the 

number of false positives while maintaining the improved detection sensitivity in SDs. 

The resulting SDrecall variants are then merged into the callset from a traditional 

caller to complement their variant detection within SDs for downstream analysis. A 

symbolic scheme of the workflow is provided in Figure 1C.  
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Fig 1. A. Schematic illustrating how paired-end reads, particularly those with insert 

sizes smaller than the SD length, can map ambiguously to multiple homologous SD 

regions. B. Mapping quality (MAPQ) score distributions for reads within SDs, 

stratified by SD size range, in GRCh37 (light blue) and GRCh38 (light orange) 

assemblies. C. Implementation of SDrecall. Size of each vertex is proportional to the 

size of SD region it represents. All paired SDs from WGAC are first refined to retain 

only paired subsegments with high similarity. Refined pairs overlapped with the multi-

aligned regions from the input alignments are then used to construct a network of 

SDs which helps identify SDs grouped by their sharing homologous sequence. For 

each SD overlapped with coding regions, all reads aligned to the SDs from the same 

group are recruited and remapped to the coding SD. Realigned reads are then 

phased and assembled into longer haplotypes, which are then identified and filtered 

for misalignment. The remained reads are used to detect variants within coding SDs 
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and the total callset across all coding SDs are then merged with variants generated 

by traditional variant callers like GATK and DeepVariant.  

 

Benchmarking against variants detected by Long Reads 

To assess the sensitivity of variant detection across all pcSDs (which span 

approximately 30Mb) in the human genome, we benchmarked the performance of 

SDrecall using 6 samples from the Genome In a Bottle (GIAB) project. These 

samples, indexed HG002 through HG007, include two trio sets, the Ashkenazi trio 

(HG002, HG003, HG004) and the Chinese trio (HG005, HG006, HG007). On both 

GRCh37 and GRCh38 assemblies, GIAB provided comprehensive benchmark 

callsets derived from long-read sequencing data, including the v4.2.1 callset for all 6 

samples and the Challenging Medical Relevant Genes (CMRG) benchmark callset 

for HG002. The GIAB CMRG callset includes benchmark variants in 273 challenging, 

medically relevant genes(30). We compared the combined callset of SDrecall and 

GATK/DeepVariant with these two benchmark callsets on both the GRCh37 and 

GRCh38 reference genomes. Our benchmarking test focused only on regions with 

sufficient coverage (regardless of MAPQs), low mappability, and high-confidence 

variants defined by GIAB. Detailed procedures for this benchmarking process are 

provided in Additional file 1: section 8.  

In addition to benchmarking on GRCh37 and GRCh38, we also compared the 

merged callset of SDrecall and GATK/DeepVariant with CMRG benchmark callsets 

on the latest T2T-CHM13 assembly for sample HG002. The detailed methods(31, 32) 

and performance is included in Additional file 1: section 8.5. The detailed preparation 

process of this benchmarking is described in Additional file 1: section 2.  
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The performance of SDrecall is evaluated by three metrics, including variant 

detection sensitivity, variant detection precision and genotype accuracy within the 

benchmarking regions. The detection sensitivity is calculated as the fraction of true 

positives (TPs) according to the golden callset within the benchmark region that are 

successfully detected. The detection precision is calculated as the fraction of 

detected variants being TPs within the benchmark region. The genotype accuracy is 

calculated as the fraction of detected TPs having accurate zygosity.   

 

Improved Detection Sensitivity 

Using a callset combined from the variants detected by GATK/DeepVariant 

and the variants detected by SDrecall on unfiltered realignments, we detected 

around 99% true positives (TPs) on GRCh37 and 98.9% on GRCh38. In comparison, 

GATK alone captured only 77.4% TPs on GRCh37 and 73.8% TPs on GRCh38, 

while DeepVariant alone captured only 73.6% TPs on GRCh37 and 69.5% TPs on 

GRCh38. Although read realignment improved SD variant detection, it also 

introduced a substantial number of false positives (FPs), with precision rates at just 

7.4%. To mitigate this, SDrecall implemented phasing and misalignment identification, 

significantly improving precision to around 40%, while maintaining sensitivities to 

around 95% on both GRCh37 and GRCh38 (Figure 2A). The detailed benchmarking 

performance data from the merged callset after misalignment elimination is displayed 

in Table 1. Additionally, in the combined callset between SDrecall and GATK, 90.0% 

of detected TPs on GRCh37 and 89.7% of detected TPs on GRCh38 have accurate 

genotypes. In the combined callset between SDrecall and DeepVariant, 91.1% of 

detected TPs were identified with accurate genotypes on both GRCh37 and GRCh38. 

When compared with the GIAB CMRG callset, SDrecall also performed similarly in 
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terms of sensitivity, precision and genotype accuracy. The detailed benchmarking 

data in terms of sensitivity and precision are provided in Table 1. As to the genotype 

accuracy, 100% of detected TPs on GRCh37 and 94.6% of detected TPs on 

GRCh38 have accurate genotypes. 

To further test the performance of SDrecall, we mark the true positives 

detected by SDrecall exclusively and the true positives detected by either GATK or 

DeepVariant (Figure 2B) within the benchmark regions in 6 samples from GIAB. 

SDrecall exclusively captured TPs missed by traditional variant callers in 102 and 

128 SD-overlapping protein coding genes on GRCh37 and GRCh38, respectively. A 

detailed list of variants is provided in the Additional file 2: Table S1.    

 

Distinguishing rare and common variants to aid molecular 

diagnosis 

  A typical application of NGS in molecular diagnosis leverages population 

allele frequencies (PAFs) obtained from public databases to help filter out common 

variants that are unlikely to be disease causal (Figure 2C). However, most state-of-

the-art databases, including gnomAD(33), 1000 Genome(34), and TOPMed(35), do 

not provide reliable PAF estimates for variants in SD regions. To achieve more 

accurate PAF estimations for variants from the SD regions, SDrecall provided a 

statistical framework that allows such estimation using in-house control cohorts. 

Since in-house cohorts are typically small and have insufficient statistical power 

compared to public population databases, we adopted a one-tailed binomial test 

(Figure 2E) to control the risk of overestimation, preserving the causal variant 

detection sensitivity of SDrecall while mitigating the risk of mis-classifying rare 
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variants as common.  The detailed introduction of the binomial test is included in the 

Method section. With this step, SDrecall can identify common variants detected 

within SDs with limited support from public databases, which help us estimate the 

impact of the FPs introduced by SDrecall. 

 

Reduced False Positives 

 In comparison with the v4.2.1 benchmark callset across 6 GIAB samples, the 

read realignment introduced 12710 and 15652 false positives (FPs) in the merged 

callset between SDrecall and GATK on GRCh37 and GRCh38, respectively. After 

applying phasing and misalignment identification (detailed in Methods), SDrecall 

successfully eliminated 10911 and 13261 FPs on GRCh37 and GRCh38, 

respectively. Given the limited sequence information captured by short paired-reads, 

even with our comprehensive misalignment elimination, it is impossible to eliminate 

all the misalignments. However, despite the precision of SDrecall cannot be 

comparable to the traditional callers like GATK and DeepVariant, the significantly 

reduced FP number still help eliminate most of the noise for final causal candidate 

selection in modern molecular diagnosis workflow (Figure 2C). To assess the impact 

of the FPs after the misalignment elimination on causal variant identification, we 

evaluated the number of rare (PAF < 0.01) and potentially deleterious (CADD(36) 

phred-scale score ≥ 20) FPs.  

To supplement the regional gaps of population allele frequencies (PAFs) in SD 

regions in gnomAD (v2 exome dataset for GRCh37; v4 genome dataset for 

GRCh38), we constructed a callset from our in-house control cohort consisting of 

498 samples. We applied SDrecall to these samples and merge the variants with 

BCFTools to a single multi-sample VCF file, providing comprehensive allele count 
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data for variants within SDs. Using this in-house callset and the aforementioned 

binomial test(Figure 2E), we classified 12434 (GRCh37) and 15423 (GRCh38) FPs 

as common variants. Additionally, 12066 (GRCh37) and 14495 (GRCh38) FPs were 

considered potentially neutral according to their CADD phred-scale scores (< 20). A 

Venn diagram illustrating the breakdown of these FPs for both assemblies is shown 

in Figure 2D. 

Crucially, after identifying common and likely neutral FPs, only eight rare and 

potentially deleterious FPs remained on GRCh37, and five on GRCh38, for further 

expert review of their potential pathogenicity. This minimal number of clinically 

relevant FPs underscores the effectiveness of our filtering approach and highlights 

SDrecall’s ability to significantly improve variant detection in SD regions while 

keeping the false positive burden low for downstream clinical interpretation. 
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Sample 

Conventional 
+ 

SDrecall  
Sensitivity 

(%) 

Conventional 
+ 

SDrecall 
Precision(%) 

Conventional 
Sensitivity (%) 

Conventional 
Precision (%) 

Total  
TPs 
(N) 

Conventional 
+ 

SDrecall 
rare pLoF FPs 

(N) 

Benchmark 
Region 

Size  
(bp) 

G
IA

B
 v

4
.2

.1
 

G
R

C
h
3
8

 

G
A

T
K

 

HG002 93.9068 32.3058 75.448 85.9470 559 2 494255 

HG003 96.2672 36.3501 78.389 84.0000 509 1 480967 

HG004 94.3396 33.5796 74.5283 83.3333 527 2 475192 

HG005 94.3431 46.1607 72.2628 84.4350 548 1 375411 

HG006 96.0912 37.5318 73.127 81.7851 615 0 512867 

HG007 93.5433 35.9347 71.0236 78.1629 637 1 488962 

D
V

 

HG002 93.2021 32.5625 70.8408 95.4327 559 1 494255 

HG003 96.6601 37.1321 73.0845 94.8980 509 0 480967 

HG004 93.7381 33.5826 67.9317 94.2105 527 0 475192 

HG005 94.3431 46.745 70.8029 92.1615 548 0 375411 

HG006 95.935 38.0155 67.4797 93.6795 615 0 512867 

HG007 92.9356 36.5658 66.876 92.6087 637 0 488962 

G
R

C
h
3
7

 

G
A

T
K

 

HG002 95.7143 41.875 79.3878 82.9424 491 3 398174 

HG003 93.9394 40.556 76.5152 80.4781 529 4 392668 

HG004 95.1579 36.6586 78.5263 79.7009 475 1 399150 

HG005 92.7239 50.611 78.1716 83.0677 536 3 305230 

HG006 95.1807 43.3046 76.2478 79.3165 581 1 378065 

HG007 95.3052 41.0931 77.6995 80.6846 427 0 319214 

D
V

 

HG002 95.5193 42.8311 75.7637 93.7028 491 1 398174 

HG003 94.3289 41.7923 72.4008 94.8020 529 0 392668 

HG004 95.1579 36.9885 73.0526 91.7989 475 1 399150 

HG005 93.097 51.3374 76.6791 89.8901 536 2 305230 

HG006 94.4923 43.9552 71.6007 93.6652 581 0 378065 

HG007 94.8478 41.5811 72.1311 93.8650 427 0 319214 

G
IA

B
 C

M
R

G
 

G
R

C
h
3

8
 

GATK 

HG002 

97.2973 47.3684 70.2703 83.8710 37 0 35973 

DV 
97.2973 47.3684 78.3784 90.6250 37 0 35973 

G
R

C
h
3

7
 

GATK 
96.2963 40 70.3704 70.3704 27 1 29566 

DV 
96.2963 41.2698 81.4815 84.6154 27 0 29566 

 

Table 1. The benchmark results for the merged callset between SDrecall and 

GATK/DeepVariant(DV). SDrecall callset is merged with one conventional variant 

caller (GATK/DeepVariant) to generate a merged callset. Variants from the merged 

callset and the benchmark callset are sliced to select the ones located within the 

benchmark region, which is generated according to Additional file 1: section 8.4. 
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Rare and pLoF FPs are false positives that are neither identified as common variants 

nor identified as neutral/benign (CADD phred score < 20). GIAB stands for the 

Genome In A Bottle project and CMRG stands for Challenging Medically Relevant 

Genes. The displayed precision and recall rates are the benchmarking performance 

achieved after the misalignment filtration.  

 

Fig 2. A. Recall rates of GATK/DeepVariant and GATK/DeepVariant–SDrecall 

callsets evaluated on six GIAB samples. The top panel compares calls to the GIAB 

v4.2.1 benchmark, and the bottom panel shows comparisons to the GIAB 

Challenging Medically Relevant Genes (CMRG) callset (available only for HG002). 
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Darker-shaded portions of the stacked bars represent true positives (TPs) detected 

without considering genotype (GT) accuracy, while lighter-shaded portions denote 

TPs with accurate GT calls. 

B. Distribution of detected TPs along the coding sequences (CDS) of selected genes. 

Each horizontal bar spans a gene’s entire CDS, with darker segments marking 

regions covered by segmental duplications. Blue vertical lines indicate TPs common 

to both callsets, and red vertical lines indicate TPs exclusively detected by SDrecall. 

Genes are selected for having SDrecall exclusively detected TPs located within the 

CDS of their canonical transcripts. 

C. Schematic of the variant interpretation workflow: rare variants are prioritized by 

effect size and functional relevance using bioinformatic tools, and the final candidate 

list is manually reviewed to identify the causal variant(s). 

D. Breakdown of false positives (FPs) across all six GIAB samples. FPs were 

categorized based on evidence of misalignment, designation as common (using an 

in-house control cohort or gnomAD), and prediction of neutrality by CADD; only the 

rare, deleterious FPs remained for expert review, with different counts observed for 

GATK–SDrecall and DeepVariant–SDrecall on GRCh37 and GRCh38. 

E. Binomial test for distinguishing rare from common variants: for a variant covered 

by n haplotypes, the expected minor allele count is modeled by a Binom(n, 0.01) 

distribution; variants with observed counts significantly exceeding expectation 

(p < 0.01) are classified as common. 

 

Application of SDrecall in real cases 

We tested the performance of SDrecall in identifying disease-causing 

mutations in SD regions on three CGD patients. All three patients carry a 
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homozygous GT deletion at 75-76 bases in the coding sequence of NCF1 gene(37), 

which leads to a frameshift effect with two consecutive altered codons. The new 

reading frame starts at the 26th amino acid residue of the protein sequence, where 

tyrosine is replaced by a histidine and is immediately followed by a premature stop 

codon, leading to a protein product with lost function, which further causes CGD. 

NCF1 is known for its high average sequence similarity (> 98%) with its two 

paralogous pseudogenes, NCF1B and NCF1C. Notably, this mutation was missed by 

GATK in all three patients while it was later detected and confirmed by the 

GeneScan (Applied Biosystems) analysis. Using the same alignment files as input to 

GATK, SDrecall successfully detected the disease-causal deletion in all three 

patients. As a proof of concept, we highlighted the ability of the tool to capture 

clinically significant variants in challenging genomic duplications. 

 

Computational Performance 

We evaluated SDrecall on six GIAB samples, with detailed coverage depths 

and fragment sizes provided in Additional file 1: Table S1. Each analysis took 

approximately 4–6 hours to complete, using 10 CPUs when targeting the entire 

human exome. If runtimes from GATK/DeepVariant is considered, additional 6-7 

hours are needed to process the mapped read data across the entire exome. In 

practical settings, phenotypic analysis often narrows the focus to a defined list of 

candidate genes, thereby substantially reducing the computational burden. In our 

practice, when targeting SD-overlapping exons of known causal genes for primary 

immunodeficiencies (around 500) (38), the runtime was significantly reduced to 

around 10 minutes per sample. The primary computational bottleneck is the 

identification of non-overlapping maximal cliques during phasing. This process has 
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been optimized using numba(39). All the codes are available at 

https://github.com/snakesch/SDrecall under the BSD-3 Clause license. 

Discussion 

 In this work, we developed SDrecall, an NGS-based variant caller designed to 

sensitively detect SNVs and small indels (small variants) within segmental 

duplications (SDs). For any given SD, reads derived from it may be misassigned to 

its homologous regions and subsequently discarded by downstream variant callers 

due to high mapping ambiguity—thereby concealing genuine variants. SDrecall 

overcomes this limitation by retrieving all reads originating from the query SD, 

regardless of their initial alignment, thereby recovering the variants that would 

otherwise be missed.  

To accomplish this, SDrecall first identifies all homologous counterparts (HCs) 

for any query SD in the human reference genome with high sensitivity and accuracy. 

Although WGAC provides a sensitive mapping of SD pairs, its binary output cannot 

disentangle overlapping SDs to reveal all HCs for a given SD. To overcome this 

limitation, SDrecall constructs a multiplex network that encodes both homologous 

and overlapping relationships among SDs. By traversing this network, SDrecall 

efficiently recovers all HCs for any query SD. While BLAT(40) can perform a similar 

search, it is optimized for short sequence queries and is at least 100× slower for 

batch queries of sequences ≥1 kb compared to our network-based approach.  

Similarly, tools like CORA(41) can track homologous counterparts by constructing a 

homology table with k-mers. However, this table is primarily designed as an 

intermediate step for accelerating read mapping, making it less suitable for our 

application. As evidence of our method’s comprehensiveness, SDrecall improves 
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small variant detection sensitivity to approximately 99% within protein-coding 

elements overlapping SDs (pcSDs) by realigning reads from all identified HCs to the 

corresponding pcSDs. 

To reduce the FPs introduced by realigned reads originated elsewhere, 

SDrecall further phased and assembled realigned reads into distinct haplotypes 

based on the sharing variants among different pairs of reads. Because misaligned 

haplotypes are generally more similar to their true origin than to their aligned region 

and tend to carry an excess of variants relative to other overlapping haplotypes, we 

use binary integer linear constraint (BILC) programming to distinguish and filter out 

these misaligned haplotypes. By enforcing constraints that at most two haplotypes 

are correctly aligned in any well-covered region due to diploidy of human germline 

genome, our approach reliably selects the correctly aligned haplotypes for 

downstream analysis. Although there are scenarios that somatic mutations may 

occur in early development, resulting in more than two haplotypes among the 

covered reads, they are not sufficiently common to be considered by SDrecall as our 

goal primarily lies in rescuing germline variants within SDs. This strategy effectively 

removed 88% of FPs introduced by read realignment, pushing the precision rate 

from around 7% to 40% while maintaining the detection sensitivity at around 95%.  

From a practical standpoint, SDrecall operates at a sensitivity-focused setting, 

which results in lower precision than traditional callers—a consequence of prioritizing 

variant recovery in segmental duplications (Figure 2A). This trade-off constrains its 

applicability to scenarios where sensitivity is paramount, such as rare disease 

diagnostics, where there is a strong prior expectation of a rare, high-impact variant 

and comprehensive variant ranking is routine. In this context (Figure 2C), the 

additional rare variants recovered in SDs increase the likelihood of identifying a 
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causal allele, while most false positives are deprioritized by automated filters based 

on population frequency and predicted functional effect. Consequently, the residual 

FP burden after filtering is minimal, enabling thorough inspection of low-mappability 

regions without substantially complicating causal variant determination. Nevertheless, 

any causal candidate identified by SDrecall should be confirmed using orthogonal 

assays such as long-range PCR(42), GeneScan fragment analysis(43), or—where 

feasible—long-read sequencing. SDrecall is particularly useful for patients whose 

phenotype implicates multiple candidate loci including SD-rich regions, because it is 

more scalable than locus-specific wet-lab assays and substantially more cost-

effective than genome-wide long read sequencing. In such workflows, SDrecall 

serves as a pre-screening tool to nominate a small set of plausible causal variants 

for targeted validation, supporting both large-scale reanalysis of legacy NGS 

datasets and routine molecular diagnostics for incoming patients. 

From a gene-level perspective, we tallied the number of additional variants 

called by SDrecall across all genes in six GIAB samples (Figure 2B). On average, 

exonic variants were detected in 201 functional coding genes on GRCh37 and in 233 

functional coding genes on GRCh38. Upon reviewing the ClinVar data released on 

July 24, 2024, we identified 14 genes on both GRCh37 and GRCh38 that are 

reported as pathogenic for certain Mendelian disorders. These genes include 

CYP21A2(44, 45), NCF1(46), NEB(47), PMS2(48), TTN(49), CBS(50), KCNE1(51), 

NUTM2B(52), OTOA(53), HBA2(54), RBFOX3(55), PI4KA(56), RAB43(57), SIK1(58) 

and STRC(59). A detailed list of variants exclusively detected by SDrecall and their 

overlapping genes, as well as the diseases from ClinVar are recorded in Additional 

file 2: Table S1. 
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SDrecall’s effectiveness depends on both the read depth and fragment size of 

the input alignments. In our benchmarks, for example, no variants were recovered in 

SMN1 or SMN2 (genes associated with spinal muscular atrophy(18)) because their 

exons did not have sufficient coverage in any of the six GIAB samples. Moreover, the 

unusually large average fragment size (≈600 bp; see Additional file 1: Table S1) in 

these samples increases the likelihood that read pairs span the junctions between 

SDs and unique genomic regions, thereby reducing mapping ambiguities. Despite 

these factors—which may underestimate SDrecall’s true potential—we observed that 

nearly 800 genes, including SMN1 and SMN2, exhibited a marked shift toward 

higher MAPQ scores after realignment. This MAPQ distribution shift underscores the 

broader benefit of SDrecall for improving variant detection, as detailed in Additional 

file 1: section 9. 

Although SDrecall enables sensitive variant detection in SD regions, its 

effectiveness and accuracy are affected by several limitations. First, the realignment-

based variant recovery approach appears to be less effective in more challenging 

genomic contexts such as low-complexity regions, long stretches of tandem repeats, 

and overlapping duplications. During development, we observed that a few realigned 

reads are having MAPQs lower than 40 and they are mainly observed in regions 

listed above. A common feature shared by these regions is that similar sequences 

are often found adjacent to or even overlapping with each other. Therefore, realigned 

reads may still have multiple similar matches within the unmasked region, leading to 

high mapping ambiguity. A symbolic diagram is provided to illustrate the mechanism 

(Additional file 1: Fig. S11).  For example, in the 1q21.1 region on chromosome 1, 

enriched with NBPF gene family duplications, adjacent or overlapping duplicated 

sequences hinder unique realignment(60). Second, although SDrecall achieves an 
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average genotype accuracy of around 90%, some variants still are detected with 

underestimated dosage, leading to an underestimation of their effect sizes. Further 

improvements are needed to enhance genotype detection accuracy. 

 

Conclusions 

To summarize, SDrecall represents a significant advancement in variant 

detection within SDs for NGS data. This accomplishment has remained elusive for 

many years despite numerous efforts. It is the first tool to construct a systematic and 

accurate SD network of human reference assemblies while addressing complexities 

such as nested duplications, allowing for efficient and extensive extraction of groups 

of regions sharing homologous sequences for further analysis. It significantly 

improved the variant detection sensitivity to 95% across all SDs while minimizing the 

count of relevant FPs left for causal candidate selection. All these benefits have been 

demonstrated in real CGD patients by SDrecall, capturing causal variants previously 

undetected by conventional NGS analysis. SDrecall addresses what was once 

considered an insurmountable challenge in NGS data analysis, filling a critical gap in 

variant detection and molecular diagnosis of Mendelian Disease patients. It can be a 

valuable asset for both individual molecular diagnosis and legacy data re-analysis, 

significantly enhancing our ability to detect and revisit genetic variations in segmental 

duplications.  
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Methods 

Establishment of a robust SD network 

To accurately identify regions of SDs on the human reference genome 

assemblies, a comprehensive paired SD map was constructed using whole-genome 

assembly comparison (WGAC)(8). However, not all segments in SD pairs are 

sufficiently similar to cause mapping ambiguity. To extract the segments with 

sufficiently high degrees of similarity, we employed minimap2(5) to compare each SD 

against its paired counterpart, retaining only the sub-segments with a local mismatch 

rate (including gaps) below 10% (Figure 3A, Additional file 1: Fig. S2). To improve 

computational efficiency, the alignment file is filtered to select only SDs that overlap 

coding regions (or user-defined regions of interest), exceed the average fragment 

length, and have a read depth ≥ 3. This filtering process creates a tailored set of SDs 

based on each input alignment file for subsequent analysis. 

A simple pairwise map of SDs is insufficient to efficiently identify all 

homologous counterparts of a given SD region. To accurately capture the complex 

relationships among SDs, we constructed a multiplex network from the refined SD 

segments (Figure 3B). This network incorporates two types of connections: 

sequence similarity (SS) edges, which connect SD regions that share a high degree 

of sequence identity, and physical overlap (PO) edges, which connect SD regions 

that overlap on the reference genome. Analysis of short-read data from the HG002 

sample (GIAB) revealed over 10k SD regions interconnected by 7k SS edges and 

65k PO edges (Additional file 1: section 3), highlighting the extensive and non-binary 

nature of SD relationships. The subnetwork surrounding the NCF1 gene and its 

paralogs NCF1B and NCF1C (Figure 3C) exemplifies this complexity. 
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To efficiently extract all homologous counterparts (HCs) of any query SD, we 

developed an in-house method based on Dijkstra's algorithm(61), implemented via 

the graph-tool Python interface(62) (Additional file 1: Fig. S4). This customized 

algorithm enables the extraction of all HCs for each SD, forming groups of SDs 

sharing homologous sequences for subsequent realignment of the mapped reads. 

The detailed methodology(63-65) is described in Additional file 1: section 3. 

 

Fig 3. A. Initial SD pairs, defined by whole-genome assembly comparison, are 

refined using minimap2 to identify sub-segments of high sequence similarity. The 

alignment between SD regions is represented by a CIGAR string, which encodes 

matches (=), mismatches (X), insertions (I), and deletions (D) in the alignment.  
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B. Symbolic representation of convoluted relationships between SD regions (A, B, C, 

and D). Pie charts for two vertices show the fraction of the region covered by two 

distinct homologous sequences.  

C. An NCF1/NCF1B/NCF1C-specific subnetwork extracted from the complete SD 

network, highlighting the relationships among SD regions overlapping this gene 

family. The red dashed edges highlighted the sequence sharing relationship among 

NCF1/NCF1B/NCF1C-overlapping SD regions. Red arrows stand for the overlapping 

relationship between SD regions and are pointed to the smaller one between the two.  

 

Realignment 

 Leveraging the SD network, SDrecall identifies groups of SDs sharing 

homologous sequences. Within each group, SDrecall recruits reads from all group 

members and realign them to each SD that overlaps with protein coding regions 

(pcSD) in the same group, respectively (Figure 4A). Since multiple SD regions within 

a group may overlap with protein coding regions, each SD region can act as either a 

source or a target during multiple reciprocal realignment processes. These 

realignments ensure that every pcSD is fully covered by all reads that may originate 

from it, thereby capturing all variants within the pcSD. In the subsequent variant 

calling using BCFtools(66), the realignments enabled the detection of, on average, 

approximately 99% of the true positives (TPs) within the benchmark regions (as 

defined in the Benchmark section of the Results). This high capture rate was 

observed across six GIAB samples for both the GRCh37 and GRCh38 assemblies, 

when compared to their respective benchmark callsets. This near-perfect variant 

detection sensitivity proves that the multiplex SD network accurately identifies all the 
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HCs for each pcSD, which offers sufficient read coverage for downstream variant 

detection. 

While this realignment strategy maximizes variant detection sensitivity, 

implementing stringent false positive (FP) control can further enhance its 

effectiveness in molecular diagnosis. Since SDrecall calls variants based on reads 

collected from pcSDs and their corresponding HCs, a large number of FPs can result, 

either from variants originated from the HCs or the natural sequence differences 

among paralogous regions on the reference genome assembly (paralogous 

sequence variants, PSVs). To limit the number of PSVs, reference sequences of 

HCs were aligned to the pcSD (Figure 4B) to create a set of intrinsic alignments, 

which are used in downstream FP elimination (Additional file 1: Fig. S7). A detailed 

description of the entire process above is provided in Additional file 1: section 5.  

 

Fig 4. A. Overview of the realignment step in SDrecall. Using default settings, 

SDrecall recovers variants in segmental duplications encapsulating functional coding 
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elements. SDrecall pools reads mapped to the functional coding SD and its 

homologous counterparts and realigns all reads against the functional coding SD.  

B. Realignment of reference sequences to identify false positives. SDrecall aligns 

reference sequences of homologous counterparts to the functional coding SD to 

identify variants originated from reference sequences of homologous counterparts. 

 

Phasing of realigned reads 

 To reduce false positives (FPs), SDrecall employs graph-based phasing to 

group realigned reads into haplotypes. Paired-end reads (termed "fragments" 

hereafter as paired reads are sequenced from short DNA fragments) are represented 

as vertices in a graph, with edges connecting fragments potentially originating from 

the same haplotype. Each edge requires two connected fragments to share identical 

sequences within their overlaps. Given that SNV density within SDs is 1.47 SNVs 

per kbp(67), haplotypes within SD regions contain much less non-reference alleles 

than reference alleles, therefore larger number of variants (SNVs and indels) on the 

shared sequence between two fragments indicates a higher likelihood that they 

originate from the same haplotype (Figure 5A). Therefore, the number of shared 

variants, as well as the overlap region size are used for calculating edge weights, 

which is used to indicate the likelihood that two overlapping fragments originate from 

the same haplotype.  

For the fragments that do not overlap with each other, there is no observed 

evidence to determine whether they can possibly originate from the same haplotype. 

Therefore, we connect them by edges with zero weights, indicating zero confidence 

for originating from the same or distinct haplotypes. As a result, only pairs of 

fragments with high quality mismatches on the sequences within their overlapping 
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region remain unconnected due to the observed evidence to reject the possibility that 

they originate from the same haplotype (Figure 5A). To group fragments into distinct 

haplotypes, we identify groups of fragments where no evidence is observed to reject 

potential haplotype sharing between any pair of fragments within the group. This 

strategy is implemented by an in-house developed algorithm named Greedy Clique 

Expansion, which is based on the ―seed-and-expand‖ heuristics for clique 

identifications(68), to identify disjoint maximal cliques (a maximal clique means a 

group of vertices where all pair of vertices are connected, and the group cannot be 

further expanded to include any more adjacent vertex, disjoint emphasizes that 

multiple maximal cliques that do not overlap with each other) within a graph (Figure 

5B). As a result, most realigned reads are grouped and assembled into longer 

consensus sequences representing distinct micro-haplotypes for downstream 

analysis. A detailed explanation of this process(39, 69-71) is provided in Additional 

file 1: section 6. 

 

Misalignment identification 

Considering the diploid nature of the human germline genome, at most two 

haplotypes are expected in a region with sufficient coverage. In general, haplotypes 

carrying more variants are more prone to incorrect alignment due to paralogous 

sequence variants (PSVs) and variants originated from homologous counterparts 

(HCs). To address this, in a well-covered region, the ideal approach would be to 

select the two haplotypes with the fewest variants, presuming they represent the true 

haplotypes. However, directly comparing all assembled haplotypes within a fixed-

size window is impractical because haplotypes vary considerably in their lengths and 

genomic spans. Therefore, we adopt a sliding window to scan through the well-
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covered region and compare haplotypes encompassing the localized region at each 

position of the window. For each haplotype, we calculate the likelihood of 

misalignment considering all the haplotype comparisons it is involved in. The 

calculated likelihoods are then integrated to a BILC programming model(72) 

(Equation 1), which is used to identify the optimal combination of haplotypes 

considered as correctly aligned.  

Given a total number of N haplotypes assembled by the remapped reads, the 

BILC sets a binary variable 𝑋𝑖 ∈ *𝑋1, 𝑋2, … , 𝑋𝑁+ to each haplotype 𝑖 , indicating 

whether it is correctly aligned (𝑋𝑖 = 1) or misaligned (𝑋𝑖 = 0). Additionally, each 𝑋𝑖 is 

linked to a positive coefficient 𝜀𝑖, which indicates the likelihood of haplotype 𝑖  being 

misaligned. In general, BILC tries to find a combination of 𝑋𝑖 that minimizes the 

output of the linear combination, hence minimizing the total likelihood of 

misalignment for the determined correctly aligned haplotypes. As previously 

mentioned, we adopt a sliding window to scan through the well-covered regions. At 

each location of the sliding window, we set a constraint that only two haplotypes 

enclosing the window are correctly aligned (sum of 𝑋𝑖 equals 2). Given that each 

haplotype can enclose the window at multiple stops, every 𝑋𝑖 is bound to several 

constraints (Figure 5C), which helps avoid the trivial solution (all 𝑋𝑖 are set to 0) to 

the optimization. The BILC was solved by the efficient integer linear programming 

solver HiGHs(72). A detailed explanation of the BILC, especially to the calculation of 

coefficients are provided in Additional file 1: section 7. 

min
𝑋𝑖∈*0,1+

∑ 𝜀𝑖𝑋𝑖

𝑁

𝑖=1

 

Equation 1. The Binary linear integer formula where 𝑋𝑖 ∈ *0, 1+ indicates whether 

haplotype 𝑖 is correctly mapped (1) or mismapped (0), N is the total number of 
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haplotypes, 𝑖 is the coefficient of each binary integer which is proportional to the 

likelihood of misalignment. 

 

Fig 5. A. Stratified edge weight determination across different overlap situations 

between two read pairs. From top to bottom, (1) presence of high-quality 

mismatches on the sequences between two read pairs within their overlaps, (2) No 

overlaps between two read pairs, (3) identical sequence (all reference alleles) 

shared between two read pairs within their overlaps, (4) identical sequence (with 

non-reference alleles) shared between two read pairs within their overlaps.  

B. Maximal clique search algorithm for haplotype phasing. Read pairs with strong 

evidence to reject the haplotype sharing are disconnected in the constructed network. 
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SDrecall first identifies subgraphs of interconnected read pairs (cliques), 

preferentially with larger aggregated edge weights (maximal cliques). Within each 

identified clique, SDrecall next removed zero-weight edges and isolated graph 

components with nonzero-weight edges. The isolated components represent the 

most likely haplotypes supported by the observations from the alignments. 

C. Symbolic scheme of constraint establishment for the binary integer linear 

constraint programming. The diploid nature of the human genome asserted that only 

two haplotypes could be correctly aligned in any well-covered region. Based on this 

fact, as the window sliding through, we set up a constraint within each position of the 

window that the total summation of all 𝑋𝑖 corresponding to the haplotypes enclosing 

the window equals to 2. 

 

Variant Calling 

Following the misalignment elimination, SDrecall used BCFtools for efficient 

variant detection across all regions piled with filtered realigned reads. Though 

followed by the misalignment elimination, the realignment process still inevitably 

introduces misaligned reads that barely harbor non-reference alleles, which might 

dilute allele depth of variant alleles at certain sites, leading underestimation of the 

variant dosage. To address this issue, SDrecall adjusts the genotype calls for certain 

variants based on the number of haplotypes supporting the variant allele, as 

determined from the phased alignments. The detailed process is described in 

Additional file 1: section 8.2.  

Since SDrecall is intended to be supplementary to traditional variant callers, 

variants called by SDrecall were merged into those called by GATK 

HaplotypeCaller(73) or DeepVariant for downstream benchmarking, where the 
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GATK/DeepVariant callset is directly acquired from the input alignments before any 

realignment manipulation. Given the superior genotype accuracy of 

GATK/DeepVariant, priority is given to the GATK/DeepVariant callset whenever there 

is a conflict in genotype calling during the merging process.  The detailed merging 

process is described in Additional file 1: section 8.3. 

 

Identify Common Variants within Segmental Duplications 

As previously introduced in the Results section, the variants within SDs are 

usually not well covered in public databases since the population variants are all 

derived from NGS data. In this study, we applied SDrecall to an inhouse control 

cohort and classify the variants as common/rare based on the allele frequency data 

from the limited cohort sample. Assuming variant allele count (AC) at a given site 

follows a binomial distribution with 𝑛 as the total allele number of alleles and 𝑝 as the 

PAF(Equation 2). SDrecall sets the null hypothesis that the query variant has a PAF 

smaller than 0.01, a typical and empirical cutoff between rare and common 

variants(74-76). Next, we tested the null hypothesis to see whether the observed AC 

was large enough to reject the null. The significance level is set at 0.01 to establish 

an upper bound for the tolerable probability of Type II error (Figure 2E). Therefore, 

any variants with an observed AC that fall within the bottom 99% of the distribution 

are classified as rare, allowing for conservative retention of rare variants to ensure 

sensitivity in identifying potential causal candidates.  

 

𝐴𝐶 ~ 𝐵𝑖𝑛𝑜𝑚(𝑛, 𝑝) 
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Equation 2. Variant allele count is modeled by a binomial distribution with a total of n 
alleles and a probability of the true population allele frequency of the variant allele in 
the general population.  
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