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Abstract

Variant calling in segmental duplications is challenging for short-read
sequencing because of ambiguous read origins. We present SDrecall, a method for
sensitive variant detection in these regions. Upon constructing a network of
homologous sequences, SDrecall realigns reads to each segmental duplication from
its homologous counterparts. Realignments are phased and assembled into
haplotypes via graph-based algorithms, followed by integer linear programming to
retain the two most plausible haplotypes. Tested against long-read benchmarks,
SDrecall achieved 95% sensitivity, while maintaining manageable false positives for
short variants. SDrecall thus offers significant value for molecular diagnosis in terms

of causal mutation detection within homologous regions.
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Background

Next-generation sequencing (NGS) has revolutionized human genome
analysis, yet certain genomic regions remain difficult to map accurately. Segmental
duplications (SDs)—defined as genomic segments of at least 1 kb with high
sequence identity (typically above 90%) to other regions(1-3)—are particularly
challenging because short reads offer limited sequence information to determine
their true origins. In modern NGS workflows, DNA is typically fragmented into pieces
ranging from 250 to 500 bp, and paired-end sequencing generates two 150 bp reads
from both ends of each fragment. Consequently, if a fragment originates entirely
within an SD, its read pair may align to multiple similar regions in the reference
genome, leading to high mapping ambiguity according to-modern mapping
algorithms(4-6). As the size of SD grows, more fragments enveloped by the SD are
likely to be mapped with undetermined origins (Figure 1A). As a proof of concept,
data from Genome in a Bottle(7) project (GIAB) sample HG002 show that mapping
quality (MAPQ)—a metric inversely related to mapping ambiguity—of the reads
originated from the SD decreases as the size of SD grows(Figure 1B).

According to the whole-genome assembly comparison (WGAC)(8), which is
considered the gold standard for SD detection(9-12), GRCh37 and GRCh38 contain
approximately 144 Mbp and 162 Mbp of SDs, respectively—about 5% of the
genome—that overlap with roughly 2,400 genes(13) (around 6% of protein-coding
regions). The telomere-to-telomere (T2T)-CHM13 assembly, however, reveals an
expanded SD landscape (approximately 218 Mbp, or 6.6% of the genome)(14, 15),
indicating a bigger burden from SDs. This presents further challenges for the

molecular diagnosis of Mendelian disorders associated with genes harboring



homologous sequences such as Chronic Granulomatous Disease (CGD, NCF1)(16),
Spinal Muscular Atrophy (SMA, SMN1/SMN2)(17, 18), Congenital Adrenal
Hyperplasia (CAH, CYP21A2)(19), and Gaucher Disease (GD, GBA)(20) . According
to the Online Mendelian Inheritance in Man (OMIM)(21), we summarized the SD-
overlapping situation of 200 selected disease causal genes to a map in Additional file
1: Fig. S3.

The mapping ambiguity within SDs can be naturally overcome by long-read
sequencing—commonly referred to as Third Generation Sequencing (TGS) since
long reads are generally larger than most SDs and spans unique genomic
sequences. Despite the rapid development of TGS, its cost remains substantially
higher than that of conventional NGS(22), leading to limited application in large-scale
clinical practice. In addition, given the huge amount of legacy NGS data from
patients accumulated in the last two decades, revisiting them with advances in
variants detection within SDs might lead to significant novel diagnoses and insights.
Therefore, improving the analysis of NGS data for sensitive variant detection within
SDs remains a valuable advancement in genomic diagnostics. While previous
methods offered some solutions(23, 24), they have typically focused on limited
genomic regions tied to specific disorders, and cannot be generalized to other SD
regions in human genome.

The mapping ambiguity and variant detection within segmental duplications
(SDs) cannot be completely resolved due to the inherently limited information carried
by short reads, thus rendering the simultaneous achievement of high sensitivity and
precision impossible. In the molecular diagnosis of Mendelian diseases, sensitivity is
of utmost importance, whereas reduced precision can be mitigated to a certain

extent through further downstream analysis. In this context, detected variants are



typically ranked to identify disease causality(25, 26), and most false positives
(FPs)—whether functionally irrelevant or common in the population—do not
withstand the causality evaluation.

Ebbert et al. proposed a method(27) to improve the mapping in low-
mappability regions by realigning reads from all related homologous regions. This
work, as a proof-of-concept, managed to recover numerous SD variants that might
explain part of missing heritability of Alzheimer’s Disease. However, their method
was not benchmarked against gold standard callsets to quantify the improved variant
detection sensitivity. In addition, this work lacks rigorous measures to control the
false positives introduced by realignments, which might lead to excessive noises for
downstream analysis.

Here we introduce SDrecall, a novel approach for sensitive detection of single
nucleotide variants (SNVs) and small indels ( < 30bp ) within SDs. SDrecall offers
small variant detection complementary to the traditional variant callers like GATK(28)
and DeepVariant(29). According to benchmarks with golden callsets derived from
long-read sequencing data in the GIAB project, SDrecall improves the variant
detection sensitivity to approximately 95% in comparison to the benchmark callsets
from the GIAB project while managed to remove 88% false positives (FPS)
introduced by read realignments. To the best of our knowledge, SDrecall is the first
comprehensive tool designed to detect small variants in SDs with high sensitivity
while stringently controlling false positives based on NGS data. It offers full
inspection of genomic regions camouflaged by ambiguous alignments while
minimizing relevant FPs clouding the causal variant identification in molecular

diagnosis. This tool is poised to play a crucial role in significantly enhancing the



molecular diagnosis rate of Mendelian disorders and has already helped capture

causal variants in three CGD patients.



Results

To demonstrate the efficacy of SDrecall in terms of enhancing the detection
sensitivity of small variants (SNPs and indels) within segmental duplications (SDs),
we need to first briefly introduce the general scheme of the workflow. With user-
defined regions of interest, which are the protein coding regions by default, SDrecall
identifies the SDs overlapping with these regions, as well as their counterpart SDs
genome-wide to form groups of SDs sharing homologous sequences. Subsequently,
within each group, SDrecall recruits all the overlapping reads, which are potentially
misaligned due to homology, and re-aligns them respectively to each SD that
overlaps with protein coding regions (protein coding SD, pcSD) in the same group.
This homology-guided read recruitment and re-mapping improves variant calling to
near perfect (approximately 99%) sensitivity within SDs, indicating a strong

competence of previous homologous counterpart identification for all SDs.

Subsequently, to remove the excessive false positives introduced by the
realignments, SDrecall phases and assembles the realigned reads into longer micro-
haplotypes via a graph-based phasing and assembly process. Given the diploid
nature of human genome, SDrecall further adopts a binary integer linear constraint
model to identify misaligned reads introduced by re-mapping, effectively reducing the
number of false positives while maintaining the improved detection sensitivity in SDs.
The resulting SDrecall variants are then merged into the callset from a traditional
caller to complement their variant detection within SDs for downstream analysis. A

symbolic scheme of the workflow is provided in Figure 1C.



[

QA e

.

Fig 1. A. Schematic illustrating how paired-end reads, particularly those with insert
sizes smaller than the SD length, can map ambiguously to multiple homologous SD
regions. B. Mapping quality (MAPQ) score distributions for reads within SDs,
stratified by SD size range, in GRCh37 (light blue) and GRCh38 (light orange)
assemblies. C. Implementation of SDrecall. Size of each vertex is proportional to the
size of SD region it represents. All paired SDs from WGAC are first refined to retain
only paired subsegments with high similarity. Refined pairs overlapped with the multi-
aligned regions from the input alignments are then used to construct a network of
SDs which helps identify SDs grouped by their sharing homologous sequence. For
each SD overlapped with coding regions, all reads aligned to the SDs from the same
group are recruited and remapped to the coding SD. Realigned reads are then
phased and assembled into longer haplotypes, which are then identified and filtered

for misalignment. The remained reads are used to detect variants within coding SDs



and the total callset across all coding SDs are then merged with variants generated

by traditional variant callers like GATK and DeepVariant.

Benchmarking against variants detected by Long Reads

To assess the sensitivity of variant detection across all pcSDs (which span
approximately 30Mb) in the human genome, we benchmarked the performance of
SDrecall using 6 samples from the Genome In a Bottle (GIAB) project. These
samples, indexed HG002 through HG0O7, include two trio sets, the Ashkenazi trio
(HG002, HG003, HG004) and the Chinese trio (HG005, HG0O06, HG007). On both
GRCh37 and GRCh38 assemblies, GIAB provided comprehensive benchmark
callsets derived from long-read sequencing data, including the v4.2.1 callset for all 6
samples and the Challenging Medical Relevant Genes (CMRG) benchmark callset
for HG002. The GIAB CMRG callset includes benchmark variants in 273 challenging,
medically relevant genes(30). We compared the combined callset of SDrecall and
GATK/DeepVariant with these two benchmark callsets on both the GRCh37 and
GRCh38 reference genomes. Our benchmarking test focused only on regions with
sufficient coverage (regardless of MAPQSs), low mappability, and high-confidence
variants defined by GIAB. Detailed procedures for this benchmarking process are
provided in Additional file 1: section 8.

In addition to benchmarking on GRCh37 and GRCh38, we also compared the
merged callset of SDrecall and GATK/DeepVariant with CMRG benchmark callsets
on the latest T2T-CHM13 assembly for sample HG002. The detailed methods(31, 32)
and performance is included in Additional file 1: section 8.5. The detailed preparation

process of this benchmarking is described in Additional file 1: section 2.



The performance of SDrecall is evaluated by three metrics, including variant
detection sensitivity, variant detection precision and genotype accuracy within the
benchmarking regions. The detection sensitivity is calculated as the fraction of true
positives (TPs) according to the golden callset within the benchmark region that are
successfully detected. The detection precision is calculated as the fraction of
detected variants being TPs within the benchmark region. The genotype accuracy is

calculated as the fraction of detected TPs having accurate zygosity.

Improved Detection Sensitivity

Using a callset combined from the variants detected by GATK/DeepVariant
and the variants detected by SDrecall on unfiltered realignments, we detected
around 99% true positives (TPs) on GRCh37 and 98.9% on GRCh38. In comparison,
GATK alone captured only 77.4% TPs on GRCh37 and 73.8% TPs on GRCh38,
while DeepVariant alone captured only 73.6% TPs on GRCh37 and 69.5% TPs on
GRCh38. Although read realignment improved SD variant detection, it also
introduced a substantial number of false positives (FPs), with precision rates at just
7.4%. To mitigate this, SDrecall implemented phasing and misalignment identification,
significantly improving precision to around 40%, while maintaining sensitivities to
around 95% on both GRCh37 and GRCh38 (Figure 2A). The detailed benchmarking
performance data from the merged callset after misalignment elimination is displayed
in Table 1. Additionally, in the combined callset between SDrecall and GATK, 90.0%
of detected TPs on GRCh37 and 89.7% of detected TPs on GRCh38 have accurate
genotypes. In the combined callset between SDrecall and DeepVariant, 91.1% of
detected TPs were identified with accurate genotypes on both GRCh37 and GRCh38.

When compared with the GIAB CMRG callset, SDrecall also performed similarly in



terms of sensitivity, precision and genotype accuracy. The detailed benchmarking
data in terms of sensitivity and precision are provided in Table 1. As to the genotype
accuracy, 100% of detected TPs on GRCh37 and 94.6% of detected TPs on
GRCh38 have accurate genotypes.

To further test the performance of SDrecall, we mark the true positives
detected by SDrecall exclusively and the true positives detected by either GATK or
DeepVariant (Figure 2B) within the benchmark regions in 6 samples from GIAB.
SDrecall exclusively captured TPs missed by traditional variant callers in 102 and
128 SD-overlapping protein coding genes on GRCh37 and GRCh38, respectively. A

detailed list of variants is provided in the Additional file 2: Table S1.

Distinguishing rare and common variants to aid molecular
diagnosis

A typical application of NGS in molecular diagnosis leverages population
allele frequencies (PAFs) obtained from public databases to help filter out common
variants that are unlikely to be disease causal (Figure 2C). However, most state-of-
the-art databases, including gnomAD(33), 1000 Genome(34), and TOPMed(35), do
not provide reliable PAF estimates for variants in SD regions. To achieve more
accurate PAF estimations for variants from the SD regions, SDrecall provided a
statistical framework that allows such estimation using in-house control cohorts.
Since in-house cohorts are typically small and have insufficient statistical power
compared to public population databases, we adopted a one-tailed binomial test
(Figure 2E) to control the risk of overestimation, preserving the causal variant

detection sensitivity of SDrecall while mitigating the risk of mis-classifying rare



variants as common. The detailed introduction of the binomial test is included in the
Method section. With this step, SDrecall can identify common variants detected
within SDs with limited support from public databases, which help us estimate the

impact of the FPs introduced by SDrecall.

Reduced False Positives

In comparison with the v4.2.1 benchmark callset across 6 GIAB samples, the
read realignment introduced 12710 and 15652 false positives (FPs) in the merged
callset between SDrecall and GATK on GRCh37 and GRCh38, respectively. After
applying phasing and misalignment identification (detailed in Methods), SDrecall
successfully eliminated 10911 and 13261 FPs on GRCh37 and GRCh38,
respectively. Given the limited sequence information captured by short paired-reads,
even with our comprehensive misalignment elimination, it is impossible to eliminate
all the misalignments. However, despite the precision of SDrecall cannot be
comparable to the traditional callers like GATK and DeepVariant, the significantly
reduced FP number still help eliminate most of the noise for final causal candidate
selection in modern molecular diagnosis workflow (Figure 2C). To assess the impact
of the FPs after the misalignment elimination on causal variant identification, we
evaluated the number of rare (PAF < 0.01) and potentially deleterious (CADD(36)
phred-scale score = 20) FPs.

To supplement the regional gaps of population allele frequencies (PAFs) in SD
regions in gnomAD (v2 exome dataset for GRCh37; v4 genome dataset for
GRCh38), we constructed a callset from our in-house control cohort consisting of
498 samples. We applied SDrecall to these samples and merge the variants with

BCFTools to a single multi-sample VCF file, providing comprehensive allele count



data for variants within SDs. Using this in-house callset and the aforementioned
binomial test(Figure 2E), we classified 12434 (GRCh37) and 15423 (GRCh38) FPs
as common variants. Additionally, 12066 (GRCh37) and 14495 (GRCh38) FPs were
considered potentially neutral according to their CADD phred-scale scores (< 20). A
Venn diagram illustrating the breakdown of these FPs for both assemblies is shown
in Figure 2D.

Crucially, after identifying common and likely neutral FPs, only eight rare and
potentially deleterious FPs remained on GRCh37, and five on GRCh38, for further
expert review of their potential pathogenicity. This minimal number of clinically
relevant FPs underscores the effectiveness of our filtering approach and highlights
SDrecall’s ability to significantly improve variant detection in SD regions while

keeping the false positive burden low for downstream clinical interpretation.
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Table 1. The benchmark results for the merged callset between SDrecall and

GATK/DeepVariant(DV). SDrecall callset is merged with one conventional variant

caller (GATK/DeepVariant) to generate a merged callset. Variants from the merged

callset and the benchmark callset are sliced to select the ones located within the

benchmark region, which is generated according to Additional file 1: section 8.4.




Rare and pLoF FPs are false positives that are neither identified as common variants
nor identified as neutral/benign (CADD phred score < 20). GIAB stands for the
Genome In A Bottle project and CMRG stands for Challenging Medically Relevant
Genes. The displayed precision and recall rates are the benchmarking performance

achieved after the misalignment filtration.
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Fig 2. A. Recall rates of GATK/DeepVariant and GATK/DeepVariant—SDrecall
callsets evaluated on six GIAB samples. The top panel compares calls to the GIAB
v4.2.1 benchmark, and the bottom panel shows comparisons to the GIAB

Challenging Medically Relevant Genes (CMRG) callset (available only for HG002).



Darker-shaded portions of the stacked bars represent true positives (TPs) detected
without considering genotype (GT) accuracy, while lighter-shaded portions denote
TPs with accurate GT calls.

B. Distribution of detected TPs along the coding sequences (CDS) of selected genes.
Each horizontal bar spans a gene’s entire CDS, with darker segments marking
regions covered by segmental duplications. Blue vertical lines indicate TPs common
to both callsets, and red vertical lines indicate TPs exclusively detected by SDrecall.
Genes are selected for having SDrecall exclusively detected TPs located within the
CDS of their canonical transcripts.

C. Schematic of the variant interpretation workflow: rare variants are prioritized by
effect size and functional relevance using bioinformatic tools, and the final candidate
list is manually reviewed to identify the causal variant(s).

D. Breakdown of false positives (FPs) across all six GIAB samples. FPs were
categorized based on evidence of misalignment, designation as common (using an
in-house control cohort or gnomAD), and prediction of neutrality by CADD; only the
rare, deleterious FPs remained for expert review, with different counts observed for
GATK-SDrecall and DeepVariant—SDrecall on GRCh37 and GRCh38.

E. Binomial test for distinguishing rare from common variants: for a variant covered
by n haplotypes, the expected minor allele count is modeled by a Binom(n, 0.01)
distribution; variants with observed counts significantly exceeding expectation

(p <0.01) are classified as common.

Application of SDrecall in real cases

We tested the performance of SDrecall in identifying disease-causing

mutations in SD regions on three CGD patients. All three patients carry a



homozygous GT deletion at 75-76 bases in the coding sequence of NCF1 gene(37),
which leads to a frameshift effect with two consecutive altered codons. The new
reading frame starts at the 26" amino acid residue of the protein sequence, where
tyrosine is replaced by a histidine and is immediately followed by a premature stop
codon, leading to a protein product with lost function, which further causes CGD.
NCF1 is known for its high average sequence similarity (> 98%) with its two
paralogous pseudogenes, NCF1B and NCF1C. Notably, this mutation was missed by
GATK in all three patients while it was later detected and confirmed by the
GeneScan (Applied Biosystems) analysis. Using the same alignment files as input to
GATK, SDrecall successfully detected the disease-causal deletion in all three
patients. As a proof of concept, we highlighted the ability of the tool to capture

clinically significant variants in challenging genomic duplications.

Computational Performance

We evaluated SDrecall on six GIAB samples, with detailed coverage depths
and fragment sizes provided in Additional file 1: Table S1. Each analysis took
approximately 4—6 hours to complete, using 10 CPUs when targeting the entire
human exome. If runtimes from GATK/DeepVariant is considered, additional 6-7
hours are needed to process the mapped read data across the entire exome. In
practical settings, phenotypic analysis often narrows the focus to a defined list of
candidate genes, thereby substantially reducing the computational burden. In our
practice, when targeting SD-overlapping exons of known causal genes for primary
immunodeficiencies (around 500) (38), the runtime was significantly reduced to
around 10 minutes per sample. The primary computational bottleneck is the

identification of non-overlapping maximal cliques during phasing. This process has



been optimized using numba(39). All the codes are available at

https://github.com/snakesch/SDrecall under the BSD-3 Clause license.

Discussion

In this work, we developed SDrecall, an NGS-based variant caller designed to
sensitively detect SNVs and small indels (small variants) within segmental
duplications (SDs). For any given SD, reads derived from it may be misassigned to
its homologous regions and subsequently discarded by downstream variant callers
due to high mapping ambiguity—thereby concealing genuine variants. SDrecall
overcomes this limitation by retrieving all reads originating from the query SD,
regardless of their initial alignment, thereby recovering the variants that would
otherwise be missed.

To accomplish this, SDrecall first identifies all homologous counterparts (HCS)
for any query SD in the human reference genome with high sensitivity and accuracy.
Although WGAC provides a sensitive mapping of SD pairs, its binary output cannot
disentangle overlapping SDs to reveal all HCs for a given SD. To overcome this
limitation, SDrecall constructs a multiplex network that encodes both homologous
and overlapping relationships among SDs. By traversing this network, SDrecall
efficiently recovers all HCs for any query SD. While BLAT (40) can perform a similar
search, it is optimized for short sequence queries and is at least 100x slower for
batch queries of sequences =1 kb compared to our network-based approach.
Similarly, tools like CORA(41) can track homologous counterparts by constructing a
homology table with k-mers. However, this table is primarily designed as an
intermediate step for accelerating read mapping, making it less suitable for our

application. As evidence of our method’s comprehensiveness, SDrecall improves


https://github.com/snakesch/SDrecall%20under%20the%20BSD-3

small variant detection sensitivity to approximately 99% within protein-coding
elements overlapping SDs (pcSDs) by realigning reads from all identified HCs to the
corresponding pcSDs.

To reduce the FPs introduced by realigned reads originated elsewhere,
SDrecall further phased and assembled realigned reads into distinct haplotypes
based on the sharing variants among different pairs of reads. Because misaligned
haplotypes are generally more similar to their true origin than to their aligned region
and tend to carry an excess of variants relative to other overlapping haplotypes, we
use binary integer linear constraint (BILC) programming to distinguish and filter out
these misaligned haplotypes. By enforcing constraints that at most two haplotypes
are correctly aligned in any well-covered region due to diploidy of human germline
genome, our approach reliably selects the correctly aligned haplotypes for
downstream analysis. Although there are scenarios that somatic mutations may
occur in early development, resulting in more than two haplotypes among the
covered reads, they are not sufficiently common to be considered by SDrecall as our
goal primarily lies in rescuing germline variants within SDs. This strategy effectively
removed 88% of FPs introduced by read realignment, pushing the precision rate
from around 7% to 40% while maintaining the detection sensitivity at around 95%.

From a practical standpoint, SDrecall operates at a sensitivity-focused setting,
which results in lower precision than traditional callers—a consequence of prioritizing
variant recovery in segmental duplications (Figure 2A). This trade-off constrains its
applicability to scenarios where sensitivity is paramount, such as rare disease
diagnostics, where there is a strong prior expectation of a rare, high-impact variant
and comprehensive variant ranking is routine. In this context (Figure 2C), the

additional rare variants recovered in SDs increase the likelihood of identifying a



causal allele, while most false positives are deprioritized by automated filters based
on population frequency and predicted functional effect. Consequently, the residual
FP burden after filtering is minimal, enabling thorough inspection of low-mappability
regions without substantially complicating causal variant determination. Nevertheless,
any causal candidate identified by SDrecall should be confirmed using orthogonal
assays such as long-range PCR(42), GeneScan fragment analysis(43), or—where
feasible—long-read sequencing. SDrecall is particularly useful for patients whose
phenotype implicates multiple candidate loci including SD-rich regions, because it is
more scalable than locus-specific wet-lab assays and substantially more cost-
effective than genome-wide long read sequencing. In such workflows, SDrecall
serves as a pre-screening tool to nominate a small set of plausible causal variants
for targeted validation, supporting both large-scale reanalysis of legacy NGS
datasets and routine molecular diagnostics for incoming patients.

From a gene-level perspective, we tallied the number of additional variants
called by SDrecall across all genes in six GIAB samples (Figure 2B). On average,
exonic variants were detected in 201 functional coding genes on GRCh37 and in 233
functional coding genes on GRCh38. Upon reviewing the ClinVar data released on
July 24, 2024, we identified 14 genes on both GRCh37 and GRCh38 that are
reported as pathogenic for certain Mendelian disorders. These genes include
CYP21A2(44, 45), NCF1(46), NEB(47), PMS2(48), TTN(49), CBS(50), KCNE1(51),
NUTM2B(52), OTOA(53), HBA2(54), RBFOX3(55), PI4KA(56), RAB43(57), SIK1(58)
and STRC(59). A detailed list of variants exclusively detected by SDrecall and their
overlapping genes, as well as the diseases from ClinVar are recorded in Additional

file 2: Table S1.



SDrecall’s effectiveness depends on both the read depth and fragment size of
the input alignments. In our benchmarks, for example, no variants were recovered in
SMN1 or SMN2 (genes associated with spinal muscular atrophy(18)) because their
exons did not have sufficient coverage in any of the six GIAB samples. Moreover, the
unusually large average fragment size (=600 bp; see Additional file 1: Table S1) in
these samples increases the likelihood that read pairs span the junctions between
SDs and unique genomic regions, thereby reducing mapping ambiguities. Despite
these factors—which may underestimate SDrecall’s true potential—we observed that
nearly 800 genes, including SMN1 and SMN2, exhibited a marked shift toward
higher MAPQ scores after realignment. This MAPQ distribution shift underscores the
broader benefit of SDrecall for improving variant detection, as detailed in Additional
file 1: section 9.

Although SDrecall enables sensitive variant detection in SD regions, its
effectiveness and accuracy are affected by several limitations. First, the realignment-
based variant recovery approach appears to be less effective in more challenging
genomic contexts such as low-complexity regions, long stretches of tandem repeats,
and overlapping duplications. During development, we observed that a few realigned
reads are having MAPQs lower than 40 and they are mainly observed in regions
listed above. A common feature shared by these regions is that similar sequences
are often found adjacent to or even overlapping with each other. Therefore, realigned
reads may still have multiple similar matches within the unmasked region, leading to
high mapping ambiguity. A symbolic diagram is provided to illustrate the mechanism
(Additional file 1: Fig. S11). For example, in the 1g21.1 region on chromosome 1,
enriched with NBPF gene family duplications, adjacent or overlapping duplicated

sequences hinder unique realignment(60). Second, although SDrecall achieves an



average genotype accuracy of around 90%, some variants still are detected with
underestimated dosage, leading to an underestimation of their effect sizes. Further

improvements are needed to enhance genotype detection accuracy.

Conclusions

To summarize, SDrecall represents a significant advancement in variant
detection within SDs for NGS data. This accomplishment has remained elusive for
many years despite numerous efforts. It is the first tool to construct a systematic and
accurate SD network of human reference assemblies while addressing complexities
such as nested duplications, allowing for efficient and extensive extraction of groups
of regions sharing homologous sequences for further analysis. It significantly
improved the variant detection sensitivity to 95% across all SDs while minimizing the
count of relevant FPs left for causal candidate selection. All these benefits have been
demonstrated in real CGD patients by SDrecall, capturing causal variants previously
undetected by conventional NGS analysis. SDrecall addresses what was once
considered an insurmountable challenge in NGS data analysis, filling a critical gap in
variant detection and molecular diagnosis of Mendelian Disease patients. It can be a
valuable asset for both individual molecular diagnosis and legacy data re-analysis,
significantly enhancing our ability to detect and revisit genetic variations in segmental

duplications.



Methods

Establishment of a robust SD network

To accurately identify regions of SDs on the human reference genome
assemblies, a comprehensive paired SD map was constructed using whole-genome
assembly comparison (WGAC)(8). However, not all segments in SD pairs are
sufficiently similar to cause mapping ambiguity. To extract the segments with
sufficiently high degrees of similarity, we employed minimap2(5) to compare each SD
against its paired counterpart, retaining only the sub-segments with a local mismatch
rate (including gaps) below 10% (Figure 3A, Additional file 1: Fig. S2). To improve
computational efficiency, the alignment file is filtered to select only SDs that overlap
coding regions (or user-defined regions of interest), exceed the average fragment
length, and have a read depth = 3. This filtering process creates a tailored set of SDs
based on each input alignment file for subsequent analysis.

A simple pairwise map of SDs is insufficient to efficiently identify all
homologous counterparts of a given SD region. To accurately capture the complex
relationships among SDs, we constructed a multiplex network from the refined SD
segments (Figure 3B). This network incorporates two types of connections:
sequence similarity (SS) edges, which connect SD regions that share a high degree
of sequence identity, and physical overlap (PO) edges, which connect SD regions
that overlap on the reference genome. Analysis of short-read data from the HG002
sample (GIAB) revealed over 10k SD regions interconnected by 7k SS edges and
65k PO edges (Additional file 1: section 3), highlighting the extensive and non-binary
nature of SD relationships. The subnetwork surrounding the NCF1 gene and its

paralogs NCF1B and NCF1C (Figure 3C) exemplifies this complexity.



To efficiently extract all homologous counterparts (HCs) of any query SD, we
developed an in-house method based on Dijkstra's algorithm(61), implemented via
the graph-tool Python interface(62) (Additional file 1: Fig. S4). This customized
algorithm enables the extraction of all HCs for each SD, forming groups of SDs
sharing homologous sequences for subsequent realignment of the mapped reads.

The detailed methodology(63-65) is described in Additional file 1: section 3.
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matches (=), mismatches (X), insertions (I), and deletions (D) in the alignment.



B. Symbolic representation of convoluted relationships between SD regions (A, B, C,
and D). Pie charts for two vertices show the fraction of the region covered by two
distinct homologous sequences.

C. An NCF1/NCF1B/NCF1C-specific subnetwork extracted from the complete SD
network, highlighting the relationships among SD regions overlapping this gene
family. The red dashed edges highlighted the sequence sharing relationship among
NCF1/NCF1B/NCF1C-overlapping SD regions. Red arrows stand for the overlapping

relationship between SD regions and are pointed to the smaller one between the two.

Realignment

Leveraging the SD network, SDrecall identifies groups of SDs sharing
homologous sequences. Within each group, SDrecall recruits reads from all group
members and realign them to each SD that overlaps with protein coding regions
(pcSD) in the same group, respectively (Figure 4A). Since multiple SD regions within
a group may overlap with protein coding regions, each SD region can act as either a
source or a target during multiple reciprocal realignment processes. These
realignments ensure that every pcSD is fully covered by all reads that may originate
from it, thereby capturing all variants within the pcSD. In the subsequent variant
calling using BCFtools(66), the realignments enabled the detection of, on average,
approximately 99% of the true positives (TPs) within the benchmark regions (as
defined in the Benchmark section of the Results). This high capture rate was
observed across six GIAB samples for both the GRCh37 and GRCh38 assemblies,
when compared to their respective benchmark callsets. This near-perfect variant

detection sensitivity proves that the multiplex SD network accurately identifies all the



HCs for each pcSD, which offers sufficient read coverage for downstream variant
detection.

While this realignment strategy maximizes variant detection sensitivity,
implementing stringent false positive (FP) control can further enhance its
effectiveness in molecular diagnosis. Since SDrecall calls variants based on reads
collected from pcSDs and their corresponding HCs, a large number of FPs can result,
either from variants originated from the HCs or the natural sequence differences
among paralogous regions on the reference genome assembly (paralogous
sequence variants, PSVs). To limit the number of PSVs, reference sequences of
HCs were aligned to the pcSD (Figure 4B) to create a set of intrinsic alignments,
which are used in downstream FP elimination (Additional file 1: Fig. S7). A detailed

description of the entire process above is provided in Additional file 1: section 5.

A share serelar zaguance shorw sindar seguence

50 geertaggeng
o coding slemems

~ DOV \J’WMQ\/\/ MDD VDD D7

;_m: Imim ‘ .
T e T I orce readnrament T o (o
M0 107 OO I 0 o

B ahare samlar seguence share simia soguence

50 overlapping
protein coding elements

>OODDOTOTDDOD OO DDV O DT DD
| e— NN

Fig 4. A. Overview of the realignment step in SDrecall. Using default settings,
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elements. SDrecall pools reads mapped to the functional coding SD and its
homologous counterparts and realigns all reads against the functional coding SD.
B. Realignment of reference sequences to identify false positives. SDrecall aligns
reference sequences of homologous counterparts to the functional coding SD to

identify variants originated from reference sequences of homologous counterparts.

Phasing of realigned reads

To reduce false positives (FPs), SDrecall employs graph-based phasing to
group realigned reads into haplotypes. Paired-end reads (termed "fragments”
hereafter as paired reads are sequenced from short DNA fragments) are represented
as vertices in a graph, with edges connecting fragments potentially originating from
the same haplotype. Each edge requires two connected fragments to share identical
sequences within their overlaps. Given that SNV density within SDs is 1.47 SNVs
per kbp(67), haplotypes within SD regions contain much less non-reference alleles
than reference alleles, therefore larger number of variants (SNVs and indels) on the
shared sequence between two fragments indicates a higher likelihood that they
originate from the same haplotype (Figure 5A). Therefore, the number of shared
variants, as well as the overlap region size are used for calculating edge weights,
which is used to indicate the likelihood that two overlapping fragments originate from
the same haplotype.

For the fragments that do not overlap with each other, there is no observed
evidence to determine whether they can possibly originate from the same haplotype.
Therefore, we connect them by edges with zero weights, indicating zero confidence
for originating from the same or distinct haplotypes. As a result, only pairs of

fragments with high quality mismatches on the sequences within their overlapping



region remain unconnected due to the observed evidence to reject the possibility that
they originate from the same haplotype (Figure 5A). To group fragments into distinct
haplotypes, we identify groups of fragments where no evidence is observed to reject
potential haplotype sharing between any pair of fragments within the group. This
strategy is implemented by an in-house developed algorithm named Greedy Clique
Expansion, which is based on the “seed-and-expand” heuristics for clique
identifications(68), to identify disjoint maximal cliques (a maximal clique means a
group of vertices where all pair of vertices are connected, and the group cannot be
further expanded to include any more adjacent vertex, disjoint emphasizes that
multiple maximal cliques that do not overlap with each other) within a graph (Figure
5B). As a result, most realigned reads are grouped and assembled into longer
consensus sequences representing distinct micro-haplotypes for downstream
analysis. A detailed explanation of this process(39, 69-71) is provided in Additional

file 1: section 6.

Misalignment identification

Considering the diploid nature of the human germline genome, at most two
haplotypes are expected in a region with sufficient coverage. In general, haplotypes
carrying more variants are more prone to incorrect alignment due to paralogous
sequence variants (PSVs) and variants originated from homologous counterparts
(HCs). To address this, in a well-covered region, the ideal approach would be to
select the two haplotypes with the fewest variants, presuming they represent the true
haplotypes. However, directly comparing all assembled haplotypes within a fixed-
size window is impractical because haplotypes vary considerably in their lengths and

genomic spans. Therefore, we adopt a sliding window to scan through the well-



covered region and compare haplotypes encompassing the localized region at each
position of the window. For each haplotype, we calculate the likelihood of
misalignment considering all the haplotype comparisons it is involved in. The
calculated likelihoods are then integrated to a BILC programming model(72)
(Equation 1), which is used to identify the optimal combination of haplotypes
considered as correctly aligned.

Given a total number of N haplotypes assembled by the remapped reads, the
BILC sets a binary variable X; € {X,, X,, ..., Xy} to each haplotype i, indicating
whether it is correctly aligned (X; = 1) or misaligned (X; = 0). Additionally, each X; is
linked to a positive coefficient ¢;, which indicates the likelihood of haplotype i being
misaligned. In general, BILC tries to find a combination of X; that minimizes the
output of the linear combination, hence minimizing the total likelihood of
misalignment for the determined correctly aligned haplotypes. As previously
mentioned, we adopt a sliding window to scan through the well-covered regions. At
each location of the sliding window, we set a constraint that only two haplotypes
enclosing the window are correctly aligned (sum of X; equals 2). Given that each
haplotype can enclose the window at multiple stops, every X; is bound to several
constraints (Figure 5C), which helps avoid the trivial solution (all X; are set to 0) to
the optimization. The BILC was solved by the efficient integer linear programming
solver HiGHs(72). A detailed explanation of the BILC, especially to the calculation of

coefficients are provided in Additional file 1: section 7.
N

min Z X
X;€{0,1}

=1
Equation 1. The Binary linear integer formula where X; € {0, 1} indicates whether

haplotype i is correctly mapped (1) or mismapped (0), N is the total number of



haplotypes, & is the coefficient of each binary integer which is proportional to the

likelihood of misalignment.
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shared between two read pairs within their overlaps, (4) identical sequence (with
non-reference alleles) shared between two read pairs within their overlaps.

B. Maximal clique search algorithm for haplotype phasing. Read pairs with strong

evidence to reject the haplotype sharing are disconnected in the constructed network.



SDrecall first identifies subgraphs of interconnected read pairs (cliques),
preferentially with larger aggregated edge weights (maximal cliques). Within each
identified clique, SDrecall next removed zero-weight edges and isolated graph
components with nonzero-weight edges. The isolated components represent the
most likely haplotypes supported by the observations from the alignments.

C. Symbolic scheme of constraint establishment for the binary integer linear
constraint programming. The diploid nature of the human genome asserted that only
two haplotypes could be correctly aligned in any well-covered region. Based on this
fact, as the window sliding through, we set up a constraint within each position of the
window that the total summation of all X; corresponding to the haplotypes enclosing

the window equals to 2.

Variant Calling

Following the misalignment elimination, SDrecall used BCFtools for efficient
variant detection across all regions piled with filtered realigned reads. Though
followed by the misalignment elimination, the realignment process still inevitably
introduces misaligned reads that barely harbor non-reference alleles, which might
dilute allele depth of variant alleles at certain sites, leading underestimation of the
variant dosage. To address this issue, SDrecall adjusts the genotype calls for certain
variants based on the number of haplotypes supporting the variant allele, as
determined from the phased alignments. The detailed process is described in
Additional file 1: section 8.2.

Since SDrecall is intended to be supplementary to traditional variant callers,
variants called by SDrecall were merged into those called by GATK

HaplotypeCaller(73) or DeepVariant for downstream benchmarking, where the



GATK/DeepVariant callset is directly acquired from the input alignments before any
realignment manipulation. Given the superior genotype accuracy of
GATK/DeepVariant, priority is given to the GATK/DeepVariant callset whenever there
is a conflict in genotype calling during the merging process. The detailed merging

process is described in Additional file 1: section 8.3.

Identify Common Variants within Segmental Duplications

As previously introduced in the Results section, the variants within SDs are
usually not well covered in public databases since the population variants are all
derived from NGS data. In this study, we applied SDrecall to an inhouse control
cohort and classify the variants as common/rare based on the allele frequency data
from the limited cohort sample. Assuming variant allele count (AC) at a given site
follows a binomial distribution with n-as the total allele number of alleles and p as the
PAF(Equation 2). SDrecall sets the null hypothesis that the query variant has a PAF
smaller than 0.01, a typical and empirical cutoff between rare and common
variants(74-76). Next, we tested the null hypothesis to see whether the observed AC
was large enough to reject the null. The significance level is set at 0.01 to establish
an upper bound for the tolerable probability of Type Il error (Figure 2E). Therefore,
any variants with an observed AC that fall within the bottom 99% of the distribution
are classified as rare, allowing for conservative retention of rare variants to ensure

sensitivity in identifying potential causal candidates.

AC ~ Binom(n,p)



Equation 2. Variant allele count is modeled by a binomial distribution with a total of n
alleles and a probability of the true population allele frequency of the variant allele in
the general population.
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